
Review Resources:

TLX: Internal documentation

Auditors:

ljmanini

spalen

yAudit TLX Review

Table of Contents

yAudit TLX Review1

Review Summarya

Scopeb

Code Evaluation Matrixc

Findings Explanationd

Crit ical Findingse

1. Crit ical - Bonding limit is bypassablea

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

High Findingsf

1. High - Wrong calculation of totalValue()a

Technical Detailsa

Impactb

https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a

Recommendationc

Developer Responsed

Medium Findingsg

1. Medium - Lost part of the redeem feea

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

2. Medium - Incorrect slippage protection in ZapSwap redeemb

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

Low Findingsh

1. Low - GenesisLocker.totalStaked will report an incorrect valuea

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

2. Low - Referrals insufficient validation during constructionb

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

3. Low - LeveragedToken.redeem() may revert unexpectedlyc

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

4 . Low - Missing validation before setting baseForAllTlxd

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

5. Low - Inconsistent value for GenesisLocker.lockTimee

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

6. Low - ChainlinkAutomation doesn’t adhere to Chainlink’s recommendationsf

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

7. Low - Referrals system is unfair for referrersg

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

8. Low - LeveragedToken.targetLeverage may exceed perpetual’s maximum leverageh

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

9. Low - The same rebalance threshold is not optimal for all leveraged valuesi

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

10. Low - ZapSwap routes can be optimizedj

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

11. Low - Incorrect market for getting min keeper feek

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

Gas Saving Findingsi

1. Gas - Inherit variable instead of defining it again multiple t imesa

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

2. Gas - Remove unused codeb

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

3. Gas - Use more gas efficient merkle proof validation methodc

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

4 . Gas - Less strict validation check can be removedd

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

5. Gas - Declare variables immutable when possiblee

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

6. Gas - Optimize Airdrop contractf

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

7. Gas - Remove unneeded approvalg

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

Informational Findingsj

1. Informational - False events can be emitteda

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

2. Informational - Missing event emitsb

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

3. Informational - Typosc

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

4 . Informational - Remove unused importsd

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

5. Informational - Possible lost value if the token will have a high supplye

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

6. Informational - Improve eventsf

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

7. Informational - Misleading function namingg

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

8. Informational - Inheritance improvementh

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

9. Informational - Upgrade OpenZeppelin dependencyi

Technical Detailsa

Impactb

Recommendationc

TLX

TLX provides a permissionless, non-custodial leveraged token platform that enables users to

mint and redeem leveraged tokens (LTs), which are backed by Synthetix perpetual futures

contracts. The users can pick between multiple tokens that they want to long or short with

different leverage levels. The Chainlink automation is used to keep the leverage factor within a

targeted range. Alongside LTs, TLX also provides a bonding mechanism for LT holders to bond

their tokens, in exchange for TLX token at a discount. TLX token can be staked to earn

protocol withdraw fees. Airdrop and referral programs are added to incentivize users to use

the protocol. The TLX protocol also enables Zapping for minting LTs with additional tokens,

not just base sUSD. Swapping is done using Velodrome V2 and Uniswap V3.

Developer Responsed

10. Informational - Split ChainlinkAutomation into multiple upkeep tasksj

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

11. Informational - Timelock allows instant arbitrary callsk

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

12. Informational - Protocol owned liquidity could lose a lot of valuel

Technical Detailsa

Impactb

Recommendationc

Developer Responsed

Final Remarksk

Review Summary

The contracts of the TLX Repo were reviewed over 16 days. The code review was performed by

2 auditors between February 19 and March 5, 2024 . The repository was under active

development during the review, but the review was limited to the latest commit at the start of

the review. This was commit 40b04b9459654ef834b695401832ad611dd41e8d for the TLX

repo.

The fixes for presented issues are included in this new commit

f0a196e392596c153a133d5ef02b876360338af6, but any changes between these commit

hashes that are unrelated to issues found in this report are not in scope.

The scope of the review consisted of the following contracts at the specific commit:

Scope

https://github.com/TLX-Protocol/protocol
https://github.com/TLX-Protocol/protocol/commit/40b04b9459654ef834b695401832ad611dd41e8d
https://github.com/TLX-Protocol/protocol/commit/f0a196e392596c153a133d5ef02b876360338af6

src/

├── AddressProvider.sol

├── Airdrop.sol

├── Bonding.sol

├── ChainlinkAutomation.sol

├── GenesisLocker.sol

├── helpers/

│ └── LeveragedTokenHelper.sol

├── LeveragedTokenFactory.sol

├── LeveragedToken.sol

├── libraries/

│ ├── AddressKeys.sol

│ ├── Config.sol

│ ├── Contracts.sol

│ ├── Errors.sol

│ ├── InitialMint.sol

│ ├── LeveragedTokens.sol

│ ├── ParameterKeys.sol

│ ├── ScaledNumber.sol

│ ├── Symbols.sol

│ ├── TimelockDelays.sol

│ ├── Tokens.sol

│ ├── Unstakes.sol

│ ├── Vestings.sol

│ └── ZapAssetRoutes.sol

├── ParameterProvider.sol

├── Referrals.sol

├── RewardsStreaming.sol

├── Staker.sol

├── SynthetixHandler.sol

├── Timelock.sol

├── TlxToken.sol

├── utils/

│ └── TlxOwnable.sol

├── Vesting.sol

└── zaps/

 └── ZapSwap.sol

After the findings were presented to the TLX team, fixes were made and included in several

PRs.

This review is a code review to identify potential vulnerabilit ies in the code. The reviewers did

not investigate security practices or operational security and assumed that privileged

accounts could be trusted. The reviewers did not evaluate the security of the code relative to a

standard or specification. The review may not have identified all potential attack vectors or

areas of vulnerability.

yAudit and the auditors make no warranties regarding the security of the code and do not

warrant that the code is free from defects. yAudit and the auditors do not represent nor imply

to third parties that the code has been audited nor that the code is free from defects. By

deploying or using the code, TLX and users of the contracts agree to use the code at their

own risk.

Category Mark Descript ion

Access Cont rol Good
Adequat e access cont rol is present in user and admin

cont rolled f unct ionalit y.

Mat hemat ics Low

There is no complex mat h. An int ernal library is used f or

scaling numbers t o avoid rounding errors. Few issues are

raised f or int ernal account ing

Complexit y Average

The prot ocol int egrat es closely wit h Synt het ix Perps V2

f or it s core f unct ionalit y and t he zap f unct ionalit y

int egrat es wit h Uniswap and Velodrome. Addit ional

t okenomics in t he prot ocol is built using bonding and

st aking.

Libraries Good
The prot ocol uses t he OpenZeppelin and Chainlink base

libraries.

Code Evaluation Matrix

Category Mark Descript ion

Decent ralizat ion Average

Cont ract s are non-upgradeable and require minimal

int ervent ion f rom an aut horized part y. New LTs may be

creat ed only a privileged act or and Timelock allows f or

some calls t o be made inst ant ly. The Chainlink

aut omat ion jobs are managed off-chain and are nat urally

managed in a more cent ralized way by t he owner of t he

aut omat ion jobs.

Code st abilit y Average
Alt hough t he reposit ory was in act ive development during

t he review, t he changes t o t he reposit ory were minor.

Document at ion Average

All int erf ace cont ract s provide Nat Spec comment s,

int ernal document at ion is complet e and rat her concise

when explaining some of t he prot ocol’s inner workings.

Monit oring Average
Event s were emitted where applicable but missing in some

f unct ions.

Test ing and

verificat ion
Average

The codebase includes unit and int egrat ion t est s, t hough

t he t est suit e may be improved wit h proper e2e and

invariant t est s. Fuzzing could be added easily.

Findings are broken down into sections by their respective impact:

Crit ical, High, Medium, Low impact

These are findings that range from attacks that may cause loss of funds, impact

control/ownership of the contracts, or cause any unintended consequences/actions

that are outside the scope of the requirements.

Gas savings

Findings that can improve the gas efficiency of the contracts.

Informational

Findings including recommendations and best practices.

Findings Explanation

The amount of TLX meant to be purchasable by users through bonding grows piece-wise

linearly: in periods of 20 days, the amount of available TLX grows by 20 days * tlxPerSecond .

When a new period begins, a decay factor is applied to tlxPerSecond , effectively reducing it .

Particularly, a bonding event should cause the amount of available TLX to be reduced, as the

total amount bonded reaches the current bonding limit.

Because Bonding.bond() fails to use its internal method Bonding.availableTlx() and instead

reads directly from _availableTlxCache , to determine the maximum amount of available TLX to

be sold through a bond, an external user can overcome this limit by repeatedly calling

Bonding.bond() purchasing an amount below _availableTlxCache .

Furthermore, as a side effect, this attack may cause a DOS on Bonding.availableTlx() through

an overf low panic, as totalTlxBonded may be larger than the other two operands seen here.

Following is a PoC that demonstrates this issue : gist The PoC shows how an attacker can

receive twice the init ial amount of _availableTlxCache . The test case should be added to

test/Bonding.t.sol and executed with forge t --mt testDoubleBondAllowsToBypassAvailableTlx .

Critical Findings

1. Crit ical - Bonding limit is bypassable

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L50-L94
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L125-L138
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L29
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L125-L138
https://gist.github.com/lmanini/bc75771dffb976ae0ef3d1149360199f

Crit ical. TLX bonding limit can be bypassed, making the contract drainable of all its TLX .

Use uint256 availableTlx_ = _availableTlxCache - totalTlxBonded to correctly account for TLX

that has already been sold via bonds:

function bond(

 address leveragedToken_,

 uint256 leveragedTokenAmount_,

 uint256 minTlxTokensReceived_

) external override returns (uint256) {

 ...

 // Calculate the amount of TLX tokens to send to the user

- uint256 availableTlx_ = _availableTlxCache;

+ uint256 availableTlx_ = _availableTlxCache - totalTlxBonded;

 ...

}

This approach has the same effect as using availableTlx() , as _updateCache() is called right

before the calculation takes place.

Fixed: d08f3e919ada742cd4c394b8a45f2508ffdfe2ba

The function totalValue() in SynthetixHandler.sol is used to get total value in Synthetix, but

the calculation is double counting profit and loss made in Synthetix.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

High Findings

1. High - Wrong calculat ion of totalValue()

https://github.com/TLX-Protocol/protocol/commit/d08f3e919ada742cd4c394b8a45f2508ffdfe2ba
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L105

totalValue() provides the total value deposited and earned in Synthetix. This value is used to

calculate the amount of leveraged token the user will receive on minting by calculating

exchange rate. Or the amount of base token the user will get for redeeming.

The function first fetches remainingMargin_ and adds profit and loss, pnl_ , to the final

calculation. In Synthetix, remainingMargin() already contains profit, as specified in NatSpec. By

checking Synthetix’s internal implementation of _remainingMargin() , it is clear that

_profitLoss() value is accounted in remaining margin value. This means that totalValue() will

double count profit and loss, first in Synthetix, second time inside a function as pnl_ value.

High. totalValue() calculates the exchange rate for minting and redeeming. After any profit or

loss is made in Synthetix, the user will get the wrong value for his tokens.

Remove additional calculations that add profit and loss. Synthetix function remainingMargin()

already returns the total value with accounted in profit and loss.

Fixed: 4998a7eaa893c294e4f0573ef6c15e5038dfcee2

During redemption, the user must pay a fee which is distributed between referrals and stakers.

If there is no staked amount, this part of the fee will be lost.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Medium Findings

1. Medium - Lost part of the redeem fee

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L105
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L157-L159
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L109
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L112
https://github.com/Synthetixio/synthetix/blob/9a3a109fcd155fb030af4f3839379584d8795b0d/contracts/PerpsV2MarketViews.sol#L171
https://github.com/Synthetixio/synthetix/blob/9a3a109fcd155fb030af4f3839379584d8795b0d/contracts/PerpsV2MarketBase.sol#L291
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L155
https://github.com/Synthetixio/synthetix/blob/9a3a109fcd155fb030af4f3839379584d8795b0d/contracts/PerpsV2MarketViews.sol#L171
https://github.com/Synthetixio/synthetix/blob/9a3a109fcd155fb030af4f3839379584d8795b0d/contracts/PerpsV2MarketBase.sol#L291
https://github.com/TLX-Protocol/protocol/commit/4998a7eaa893c294e4f0573ef6c15e5038dfcee2
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L117
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L118

In redeem() function, the fee is taken from the user and donated to stakers. The problem is

when the condition staker_.totalStaked() != 0 is false. This means that the fee amount is

allocated for the stakers, but if there is no staked value, the amount value will stay in the

contract. There is no option to collect undistributed fees which is a loss for the protocol.

Medium. A part of the fee will be lost in the contract under certain conditions.

If the staked value is zero, send the fee to the treasury or return it to the user.

if (amount_ != 0) {

 if (staker_.totalStaked() != 0) {

 baseAsset_.approve(address(staker_), amount_);

 staker_.donateRewards(amount_);

 } else {

 baseAmountReceived_ += amount_; // return the fee to the user

 // or send to treasury: baseAsset_.transfer(addressProvider_.treasury(),

amount_);

 }

}

Fixed: 0d8a034f8daf973dddf94e0dde5d6b6ca08933c4

ZapSwap contract enables users to use the protocol without having to swap to the base

asset. Function mint() and redeem() have an additional parameter for min amount out to offer

users slippage protection. In the function redeem() slippage protection is incorrectly

implemented which could result in lost value for users.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. Medium - Incorrect slippage protect ion in ZapSwap redeem

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L85
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L120
https://github.com/TLX-Protocol/protocol/commit/0d8a034f8daf973dddf94e0dde5d6b6ca08933c4
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L100
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L157
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L157

Zap function redeem() receives the leveraged token, redeems it for the base asset then

swaps the base asset for zap asset. It also has parameter minZapAssetAmountOut_ which

defines the minimum amount of zap token the user will receive. This way the user defines

slippage protection when redeeming via ZapSwap.

The parameter minZapAssetAmountOut_ is incorrectly used when calling the redeem function on

the leveraged token. Leveraged token redeem has minBaseAmountReceived parameter which

defines minimal amount of base token received, but instead of min base amount, min zap

asset amount is passed. Because those two tokens are not the same, it could cause

leveraged token redeem function to revert on any meaningful slippage protection defined by

the user using minZapAssetAmountOut_ .

Instead of applying slippage protection to the leveraged token redeem function, it should be

checked only after swapping is done and the final amount of zap asset is received. This is

implemented correctly in ZapSwap here.

Medium. Incorrect slippage protection could disable users from redeeming with slippage

protection. This could force users to use redeem without the slippage protection and incur a

big loss for users.

Remove the incorrect slippage parameter when calling redeem on leveraged token and pass

zero instead. It is safe to use zero because the slippage protection is handled after swapping

from base asset to zap asset.

targetLeveragedToken.redeem(

 leveragedTokenAmountIn_,

- minZapAssetAmountOut_

+ 0

);

Fixed: 98d21b6725d6c7ab727a2b43edaa0111af4ae8bb

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Low Findings

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L157
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L161
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L158
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L183-L185
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L183-L185
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/interfaces/ILeveragedToken.sol#L38
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L161
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L204-L205
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L183-L186
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L204-L205
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L204-L205
https://github.com/TLX-Protocol/protocol/commit/98d21b6725d6c7ab727a2b43edaa0111af4ae8bb

GenesisLocker.migrateFor() is used to move unlocked TLX tokens to the Staker.sol contract.

In the migration process, GenesisLocker.migrateFor() correctly deletes _balances[msg.sender]

and unlockTime[msg.sender] , but it fails to decrease the totalStaked storage variable. Although

totalStaked impacts the way rewards are streamed to stakers, as can be seen in

_globalCheckpoint() , given that stakers can only exit once the entire amount of rewards has

been streamed, we haven’t identified a way in which this issue affects the rewards distribution

process.

Low. GenesisLocker.totalStaked reports an incorrect value once a migration occurs.

Correctly account for the amount of TLX unstaked:

function migrateFor(address receiver_) public {

 uint256 amount_ = _balances[msg.sender];

 if (amount_ == 0) revert ZeroAmount();

 if (receiver_ == address(0)) revert Errors.ZeroAddress();

 if (!_shutdown && unlockTime[msg.sender] > block.timestamp)

 revert NotUnlocked();

 _checkpoint(msg.sender);

 delete _balances[msg.sender];

 delete unlockTime[msg.sender];

+ totalStaked -= amount_;

 addressProvider.staker().stakeFor(amount, receiver_);

 emit Migrated(msg.sender, receiver_, amount_);

}

1. Low - GenesisLocker.totalStaked will report an incorrect value

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/GenesisLocker.sol#L91-L106
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Staker.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/GenesisLocker.sol#L100
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/GenesisLocker.sol#L101
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/GenesisLocker.sol#L140-L146

Fixed: 8d13c9f61cabd2caa33c153aae9399b70d787c00

Referrals has 2 storage variables, Referrals.rebatePercent and Referrals.earningsPercent ,

which are used to calculate how fees earned by the system are distributed between a user and

the referrer he selected.

Within the contract’s constructor, the values assigned to the 2 mentioned variables aren’t

validated to be such that rebatePercent + earningsPercent <= 1e18 . In the case in which the

above condition doesn’t hold, the contract wouldn’t allow its owner to fix the issue, as

Referrals.setRebatePercent() and Referrals.setEarningsPercent() would both revert, calling for

a redeployment of the contract to fix the issue. Furthermore, this issue will cause a DoS in

LeveragedToken.redeem() , as the contract grants an approval for fee_ here, but

Referrals.takeEarnings() would try to pull an amount of tokens larger than fee_ .

Low. Unlikely deployment error will cause DoS in LeveragedToken redeem flow.

Validate the values of parameters passed to Referrals ’s constructor, e.g.:

constructor(

 address addressProvider_,

 uint256 rebatePercent_,

 uint256 earningsPercent_

) TlxOwnable(addressProvider_) {

+ require(rebatePercent_ + earningsPercent_ <= 1e18);

 addressProvider = IAddressProvider(addressProvider);

 rebatePercent = rebatePercent_;

 earningsPercent = earningsPercent_;

}

D e v e l o p e r R e s p o n s e

2. Low - Referrals insufficient validat ion during construct ion

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

https://github.com/TLX-Protocol/protocol/commit/8d13c9f61cabd2caa33c153aae9399b70d787c00
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L28-L36
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L97-L105
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L108-L115
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L85-L132
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L112-L113
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L39-L63

Fixed: 3343136ffdd4c8eb435f63c53027b62fb4700e8a

Within the LeveragedToken.redeem() method, some fees are detracted from the amount the

sender is to receive from redeeming his LeveragedToken s and are distributed as rewards to

users in the referral program and to stakers who have locked funds in Staker .

The fee allocated for TLX stakers is donated by calling Staker.donateRewards() , which occurs

within LeveragedToken.redeem() at L120. The rewards donation occurs on the condition that

there is a non-zero amount of TLX to donate to the Staker contract, and that such contract

has a non zero amount of funds staked: L118. Inspecting Staker.donateRewards() , we found

that this method enforces a stricter condition than the one mentioned above: the method

checks that Staker.totalStaked - Staker.totalPrepared != 0 at L38, reverting if such condition

holds.

As a result, in the unlikely event in which all of TLX staked in Staker enters the unstaking

process, every instance of LeveragedToken will suffer a DoS on its redeem() f low.

Following is a PoC we’ve developed to confirm our finding: gist. You should add it to

test/Staker.t.sol and run it with forge t --mt testDonateRewards_FullUnstakeDOS -vv

D e v e l o p e r R e s p o n s e

3. Low - LeveragedToken.redeem() may revert unexpectedly

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/commit/3343136ffdd4c8eb435f63c53027b62fb4700e8a
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L85-L132
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Staker.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Staker.sol#L35-L45
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L120
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L118
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Staker.sol#L38
https://gist.github.com/lmanini/a6504da7abc89c57af0d23873cd026e1

Low. An unlikely event will cause a short-lived DoS.

Modify the condition in LeveragedToken.redeem() to also take into account this situation:

...

IStaker staker_ = addressProvider_.staker();

uint256 amount_ = fee_ - referralAmount_;

- if (amount_ != 0 && staker_.totalStaked() != 0) {

+ if (amount_ != 0 && staker_.totalStaked() > staker_.totalPrepared()) {

 baseAsset_.approve(address(staker_), amount_);

 staker_.donateRewards(amount_);

}

// Redeeming

burn(msg.sender, leveragedTokenAmount);

...

Fixed: efcd00332427766cea0209a2e7605e1de00a182f

Setting the variable baseForAllTlx to zero will disable bonding.

The bonding contract has the function setBaseForAllTlx() without the validation that the

value is not zero. If the value is set to zero, calling the function _exchangeRate() will revert every

time because of dividing with zero. This will disable any further usage of bonding.

Token allocation for boding is 42%. Because bond value grows over t ime, it is recommended

to disable any pausing which would happen by setting baseForAllTlx to zero.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

4. Low - Missing validat ion before setting baseForAllTlx

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/commit/efcd00332427766cea0209a2e7605e1de00a182f
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L97
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L173
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L76
https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a#token-allocation

Low. Unintended or malicious setting baseForAllTlx to zero will disable bonding.

Verify that baseForAllTlx is not zero before setting the new value in the setter function

setBaseForAllTlx() .

Fixed: 8cc419d8ee324db88fcc058723458e5c09948857

There is a discrepancy between docs and code config for value GenesisLocker.lockTime .

The docs define the genesis locking period value as 26 weeks which is equal to 182 days. But in

the config, this variable is defined as 180 days.

Low.

Define the same value for genesis lock time in both the docs and the config.

Fixed: d07675bf96e5db1f6cd8531eb71b120416d4a88a

ChainlinkAutomation implements Chainlink’s AutomationCompatibleInterface , which serves to

specify custom logic triggers for Chainlink keepers to upkeep the protocol.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

5. Low - Inconsistent value for GenesisLocker.lockTime

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

6. Low - ChainlinkAutomation doesn’t adhere to Chainlink’s recommendat ions

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L97
https://github.com/TLX-Protocol/protocol/commit/8cc419d8ee324db88fcc058723458e5c09948857
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/GenesisLocker.sol#L23
https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a
https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a#genesis-locking
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Config.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Config.sol#L33
https://github.com/TLX-Protocol/protocol/commit/d07675bf96e5db1f6cd8531eb71b120416d4a88a
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol
https://github.com/smartcontractkit/chainlink/blob/8edf2758101fbf9083ddf1b6a25b36240d1de189/contracts/src/v0.8/automation/interfaces/AutomationCompatibleInterface.sol

ChainlinkAutomation fails to respect the recommendation provided by

AutomationCompatibleInterface here, as ChainlinkAutomation.performUpkeep() fails to validate

the performData_ argument it ’s passed. In particular, the method doesn’t validate that every

entry in the rebalanceTokens_ array is a legit imate instance of LeveragedToken , registered within

LeveragedTokenFactory .

Low. Not following Chainlink’s guidelines may lead to unexpected issues in the future.

Within ChainlinkAutomation.performUpkeep() , correctly validate the dynamic array of addresses

passed as an argument. In particular, ensure that:

Fixed: dc587e862a14053607d8a2d5cbaf 1714ecb0b3ba

Users can change the referral code used to earn part of the redeem fee at any time. This can

lead to an unfair system for referrers because they could lose fees from the users they have

brought to the TLX protocol.

The referral program is intended to reward referrals that have brought new users to the

protocol. They usually provide their referral code to use for registration, the first interaction

with the new protocol. As the user brings value to the protocol, the referrer is eligible to get

part of the value. In the TLX, it is done in Referrals contract and referral fee is earned by getting

part of the redeeming fee. This is a fair system for both the user and the referrer because they

both earn part of the fee.

The user has the option to update his referral code at any time. By changing the referral code,

part of the fee will be directed to another referrer which can be unfair to the first referrer

because he brought the user to the protocol. This leaves an opportunity for referrers to

basically buy users by offering them some reward if they change referral code.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

token_ is always a LeveragedToken registered within LeveragedTokenFactory .1

Validate that block.timestamp >= _nextAttempt[token_] for every token_ .2

D e v e l o p e r R e s p o n s e

7. Low - Referrals system is unfair for referrers

T e c h n i c a l D e t a i l s

https://github.com/smartcontractkit/chainlink/blob/8edf2758101fbf9083ddf1b6a25b36240d1de189/contracts/src/v0.8/automation/interfaces/AutomationCompatibleInterface.sol#L28-L34
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L35-L62
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedTokenFactory.sol
https://github.com/TLX-Protocol/protocol/commit/dc587e862a14053607d8a2d5cbaf1714ecb0b3ba
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L39
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L89

Low. Referrers could lose their part of the fees if the user changes the referral code.

Disable the option to update the referral code after it is set.

An additional constraint could be set so that only new users can update the referral code,

depending on the protocol preferences. This would limit the rewards only to referees who have

brought new users to the protocol.

Fixed: c374a6c9ff083ff9ea355c33818e83c2fdd31b6d

Each instance of LeveragedToken has an immutable targetLeverage , which defines the leverage

level the underlying perpetual posit ion should aim towards at all t imes.

Config defines the MAX_LEVERAGE constant as 50e18 , specifying that instances of

LeveragedToken are allowed to have a maximum of 50x target leverage. Analyzing the markets

intended to be utilized for the init ial LeveragedToken s, it was found that Synthetix Perpetuals

for OP and LINK allow for a maximum 27.5x leverage, while for other assets like BTC and ETH a

maximum of 55x is allowed.

Low. Insufficient validation during LeveragedToken construction allows deploying tokens that will

never reach their target leverage.

Within LeveragedTokenFactory.createLeveragedTokens() , also validate that targetLeverage_ is

smaller than the targetAsset_ market’s max leverage.

Fixed: ecda7b4af 10b0b9077263035a00cfeed994ea384

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

8. Low - LeveragedToken.targetLeverage may exceed perpetual’s maximum

leverage

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

9. Low - The same rebalance threshold is not opt imal for all leveraged

values

https://github.com/TLX-Protocol/protocol/commit/c374a6c9ff083ff9ea355c33818e83c2fdd31b6d
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L31
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Config.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Config.sol#L42
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedTokenFactory.sol#L42-L81
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/interfaces/synthetix/IPerpsV2MarketData.sol#L15
https://github.com/TLX-Protocol/protocol/commit/ecda7b4af10b0b9077263035a00cfeed994ea384

The rebalance threshold value is defined only per token. Token can have different leveraged

value, from 1x to 50x. Having the same rebalance threshold for all leverage targets could be

suboptimal.

The rebalance threshold value is used to trigger the rebalancing of LeveragedToken. Maximum

leverage value is set to 50x. If the same threshold value is used for leverage values, it will have

to be configured to cover the worst-case scenario, in this case, 50x. This would result in too

often calls to leveraged tokens where the target leverage is set to 1x.

The users pay the price for too often calling rebalance, once in higher gas paid for a mint and

redeem call, if the rebalance is called. The second time when rebalance is triggered by the

Chainlink automator. Also, additional fees are paid to Synthetix when submitting the rebalance

off-chain order.

Enabling a more fine-grained setting of the threshold value, by splitting the threshold value per

token and the target value will lead to more efficient rebalance calls.

Low. Calling rebalance too often is costly for the users.

Extended the mapping _rebalanceThresholds to enable storing rebalance threshold value per

token and target leverage value.

We disagree this is an issue. We don’t have any intention of having the same rebalance

thresholds for all leveraged tokens. And the codebase already supports having a different

rebalance threshold per leveraged token, and the setting of those different rebalanced

thresholds. The _rebalanceThresholds mapping already stores the rebalance threshold values

per leveraged token.

Routes for ZapSwap can be changed to be more optimal for the end user.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

10. Low - ZapSwap routes can be opt imized

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ParameterProvider.sol#L104
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L196
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Config.sol#L42
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L79
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L129
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L139
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L139
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L74
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ParameterProvider.sol#L23

ZapSwap routes are defined in the library ZapAssetRoutes . Routes that can be changed to more

optimal are:

DAI can be swapped with better rates to USDC.e on Uniswap V3.

USDT can be swapped with better rates to USDC.e on Uniswap V3.

Swap data on March 4 , 2024 :

DAI USDC.e on Uniswap V3 USDC.e on Velodrome V2

100000 99979.9 99724.11

10000 9998.62 9995.69

1000 999.89 999.64

USDT USDC.e on Uniswap V3 USDC.e on Velodrome V2

100000 100052 99059.80

10000 10006.2 9995.37

1000 1000.66 999.67

Low. Use more optimal swapping routes to provide better value for the end user.

Change swapping routes for DAI and USDT to USDC.e. Swap them on Uniswap V3 instead of

Velodrome V2 if the rates stay better on Uniswap V3.

Fixed: 42671703ff5034d92113ac3fd25e7e420578f0f7

Variable _futuresMarketSettings is defined as interface IFuturesMarketSettings is used to get

min keeper fee for Futures Market. Instead, Perps V2 Market should be used because all

Synthetix integration is done in Perps V2 Market, the fee should be fetched for this market.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

11. Low - Incorrect market for getting min keeper fee

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/ZapAssetRoutes.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/ZapAssetRoutes.sol#L52
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/ZapAssetRoutes.sol#L38
https://github.com/TLX-Protocol/protocol/commit/42671703ff5034d92113ac3fd25e7e420578f0f7
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L17

_futuresMarketSettings is used to get _minKeeperFee() . TLX protocol is deposit ing only to

Perps V2 Market, it should use IPerpsV2MarketSettings interface to get _minKeeperFee .

In the test SynthetixHandler is deployed using PERPS_V2_MARKET_SETTINGS which address on OP

is PerpsV2MarketSettings contract. This means that the address used in the tests is correct,

but incorrect naming and interface are defined in the SynthetixHandler contract. The tests

have passed because both interfaces have the function _minKeeperFee() .

Incorrect naming and interface could lead to defining the Synthetix market when deploying

SynthetixHandler .

Low. Using the incorrect market to get min keeper fee value will result in incorrect calculations.

Use the correct market to get min keeper fee. Rename _futuresMarketSettings to

_perpsMarketSettings and define it as interface IPerpsV2MarketSettings .

Fixed: dd27a14df5a1a45931cfa7bc53f 181f0a8e76ac3

Variable _addressProvider is defined as private in abstract contract TlxOwnable . Change the

visibility to internal so other contracts can access it instead of defining the same value again.

Other contracts that extend TlxOwnable contract but also define _addressProvider :

Airdrop.sol

Bonding.sol

ChainlinkAutomation.sol

LeveragedToken.sol

LeveragedTokenFactory.sol

ParameterProvider.sol

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Gas Saving Findings

1. Gas - Inherit variable instead of defining it again mult iple t imes

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L17
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L250
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/test/shared/IntegrationTest.sol#L170
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Contracts.sol#L8
https://optimistic.etherscan.io/address/0x649F44CAC3276557D03223Dbf6395Af65b11c11c#code#L12
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L17
https://github.com/TLX-Protocol/protocol/commit/dd27a14df5a1a45931cfa7bc53f181f0a8e76ac3
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/utils/TlxOwnable.sol#L6
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L12
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L24
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L16
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L24
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedTokenFactory.sol#L16
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ParameterProvider.sol#L21

Referrals.sol

RewardsStreaming.sol

ZapSwap.sol

Gas savings.

Set variable _addressProvider visibility to internal and use it instead of defining a new variable

with the same name and value in the defined contracts above. The variable is immutable in all

cases, so it can be safely inherited.

We will not implement this change. We think it is not worth the gas savings in this case.

Some code is never used and can be removed to save gas during deployment.

Functions that are declared but never used include:

_orderFee()

scaleFrom()

scaleTo()

min()

tryGet()

get()

cancelLeverageUpdate()

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. Gas - Remove unused code

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L15
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L17
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L17
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L229
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/ScaledNumber.sol#L7
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/ScaledNumber.sol#L20
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/ScaledNumber.sol#L51
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Unstakes.sol#L54
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Unstakes.sol#L62
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L82-L86

Gas savings.

Remove or comment out the unused functions.

Fixed: bc55169a36132628cbf25eb738212630dbb18f6b

Merkle proof validation uses suboptimal method to check proof’s validity.

Using MerkleProof.verify() within Airdrop._isValid() bares the cost of copying the

merkleProof_ array from calldata to memory. For cases in which the proof array is passed as

calldata, OpenZeppelin’s library offers a better alternative: verifyCalldata()

Gas savings.

Use MerkleProof.verifyCalldata() .

Gas savings data from provided tests:

testClaim() (gas: -413 (-0.358%))

testRevertsWhenAlreadyClaimed() (gas: -438 (-0.426%))

testRevertsForInvalidProof() (gas: -411 (-2.409%))

We will not implement this change. We think it is not worth the gas savings in this case.

Referrals.setRebatePercent() is used by the contract owner to set the

Referrals.rebatePercent storage variable.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

3. Gas - Use more gas efficient merkle proof validat ion method

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

4. Gas - Less strict validat ion check can be removed

https://github.com/TLX-Protocol/protocol/commit/bc55169a36132628cbf25eb738212630dbb18f6b
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L81-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol#L39-L41
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L97-L105

The checks at L101 and L102 are equivalent when Referrals.earningsPercent == 0 and the latter

is stricter when Referrals.earningsPercent > 0 .

Gas savings.

Remove the less strict check.

Fixed: 44befafe284a94850f0ac637c09b174692f8538d

Using immutable variables can provide gas savings compared to non-immutable variables if

the variables only need to be set once.

The variable deadline can be set as immutable. It is only set in the constructor and is not

changed after that.

Gas savings.

Declare the deadline variable as immutable for gas savings.

Fixed: 1543ec767361eadbe333d124039742160dd01ae1

Airdrop can be optimized by removing variable totalClaimed and changing function claim() .

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

5. Gas - Declare variables immutable when possible

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

6. Gas - Opt imize Airdrop contract

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L101
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L102
https://github.com/TLX-Protocol/protocol/commit/44befafe284a94850f0ac637c09b174692f8538d
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L20
https://github.com/TLX-Protocol/protocol/commit/1543ec767361eadbe333d124039742160dd01ae1
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L20
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L22
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L37

Removing the storage variable totalClaimed and access to it can save gas costs. This value

can be replaced by checking TLX balance: _addressProvider.tlx().balanceOf() . Gas savings on

claim() function could encourage more users to claim the token and, more importantly, save

the gas costs for the end users.

Gas savings.

Remove variable totalClaimed and change function claim() to following:

function claim(

 uint256 amount_,

 bytes32[] calldata merkleProof_

) external override {

 // Checking claim is valid

 if (block.timestamp > deadline) revert ClaimPeriodOver();

 if (hasClaimed[msg.sender]) revert AlreadyClaimed();

 if (!_isValid(msg.sender, amount_, merkleProof_)) {

 revert InvalidMerkleProof();

 }

 uint256 balance = _addressProvider.tlx().balanceOf(address(this));

 uint256 airdropAmount_ = _airdropAmount;

 bool completed_ = balance == 0;

 if (completed_) revert AirdropCompleted();

 if (amount_ > balance) {

 amount_ = balance;

 }

 // Updating state

 hasClaimed[msg.sender] = true;

 addressProvider.tlx().transfer(msg.sender, amount);

 emit Claimed(msg.sender, amount_);

}

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L37

Change in function mintUnclaimed() line L75:

- uint256 unclaimed_ = _airdropAmount - totalClaimed;

+ uint256 unclaimed_ = addressProvider_.tlx().balanceOf(address(this));

Gas savings data from provided tests:

testUpdateMerkleRootRevertsForNonOwner() (gas: -6 (-0.035%))

testMintUnclaimedFailsForNonOwner() (gas: -11 (-0.064%))

testMintUnclaimedFailsWhenStillOngoing() (gas: -11 (-0.065%))

testClaimingAfterDeadlineReverts() (gas: -13 (-0.114%))

testMintUnclaimed() (gas: -410 (-0.695%))

testRevertsForInvalidProof() (gas: -416 (-2.438%))

testInit() (gas: -2982 (-8.453%))

testClaim() (gas: -22013 (-19.071%))

testRevertsWhenAlreadyClaimed() (gas: -21000 (-20.410%))

We will not implement this change. We think it is not worth the gas savings in this case.

SynthetixHandler approves base asset to Synthetix market which is not needed for a transfer

margin call.

Approval can be safely removed because the PerpsV2Market calls burn on sUSD and that call

doesn’t need approval from the SynthetixHandler.

Gas savings.

Remove unneeded approval call.

Fixed: ddd1b3d5fdac181d3429f563cba70447df0f3580

D e v e l o p e r R e s p o n s e

7. Gas - Remove unneeded approval

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Informational Findings

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L75
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L38
https://github.com/Synthetixio/synthetix/blob/d656d51bbc47a12289c4810ef6daae40f9f8a585/contracts/PerpsV2Market.sol#L142
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/SynthetixHandler.sol#L38
https://github.com/TLX-Protocol/protocol/commit/ddd1b3d5fdac181d3429f563cba70447df0f3580

There is a possibility of emitting events for actions that didn’t happen, like adding and

removing rebalancer addresses from the set.

The function addRebalancer() adds provided address to a set of rebalancers and emits

RebalancerAdded event. If the provided address was already in the set, it wouldn’t be added

again, so the emitted event would be false. OZ function to add the item to a set returns true

when the item is added. This value can be checked before emitting the event.

The function removeRebalancer() will emit RebalancerRemoved event if the address wasn’t

removed from set, in the case it didn’t exist in the set. OZ function to remove the item from a

set returns true when the item is removed.

Informational.

Emit events only for actions that happened.

Fixed: 84d3ccd6583862e6de73ebad7c5467e9adca4b31

Some functions that transfer values or modify state variables do not have events. Events can

assist with analyzing the on-chain history of contracts and are therefore beneficial to add in

important functions.

Functions that could have events added include:

setBaseForAllTlx()

launch()

setIsPaused()

resetFailedCounter()

setAssetSwapData()

removeAssetSwapData()

1. Informat ional - False events can be emitted

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. Informat ional - Missing event emits

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/AddressProvider.sol#L56
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bd325d56b4c62c9c5c1aff048c37c6bb18ac0290/contracts/utils/structs/EnumerableSet.sol#L65
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/AddressProvider.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bd325d56b4c62c9c5c1aff048c37c6bb18ac0290/contracts/utils/structs/EnumerableSet.sol#L83
https://github.com/TLX-Protocol/protocol/commit/84d3ccd6583862e6de73ebad7c5467e9adca4b31
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L97
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Bonding.sol#L106
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/LeveragedToken.sol#L149
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L75
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L43
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/zaps/ZapSwap.sol#L82

Informational.

Add events to the functions listed above.

Fixed: becfd9568db7f3dcce2ce8878a963e678eec9f7d

Some comments have typos.

A comment in Timelock has a typo fro .

Informational.

Fix the typos.

Fixed: 1eecec69df35e55fe592f657f4fbc22863296108

Remove unneeded imports from contracts for cleaner code.

RewardsStreaming.sol has unused import Errors .

Informational.

Remove specified import or move errors from interfaces to Errors.sol.

Fixed: 14a2b479784e31de703d834d29a99bacd5be8961

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

3. Informat ional - Typos

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

4. Informat ional - Remove unused imports

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

5. Informat ional - Possible lost value if the token will have a high supply

https://github.com/TLX-Protocol/protocol/commit/becfd9568db7f3dcce2ce8878a963e678eec9f7d
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Timelock.sol#L145
https://github.com/TLX-Protocol/protocol/commit/1eecec69df35e55fe592f657f4fbc22863296108
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L9
https://github.com/TLX-Protocol/protocol/commit/14a2b479784e31de703d834d29a99bacd5be8961

In Unstakes library uses unsafe casting from uint256 to uint192 which can lead to loss value

for the user.

For unstake f low, user can provide values in uint256 precision which is then cast to smaller

precision uint192 without any checks. If the user provides the amount above uint192 , this

amount will be transferred from him to Staker contract but only type(uint192).max value will be

stored in unstake queue. The user will be able to unstake the amount stored in the queue which

is lower than the amount sent for unstaking which is a direct loss for the user.

TLX total supply is defined in config to a value way below type(uint192).max meaning that

there is no possibility to lose value in unstake with the current config values.

Informational.

Use higher precision for unstake queue amounts if the TLX total supply will be changed to

value above type(uint192).max .

We disagree this is an issue. We don’t have plans of modifying the total supply from what is

currently in the Config

Values in some events could be changed to provide a more accurate value for off-chain

analysis.

Function takeEarnings() emits event EarningsTaken with fees_ as second parameter. This

value could be incorrect because the token transferred value is done using variable

totalAmount_ . Additionally, two events could be emitted for better analysis, one for referrer_

and one for user_ .

In the Staker contract, event PreparedUnstake contains only address of message sender,

adding amount value could be useful.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

6. Informat ional - Improve events

T e c h n i c a l D e t a i l s

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Unstakes.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Unstakes.sol#L35
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Unstakes.sol#L35
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Config.sol#L26
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/libraries/Unstakes.sol#L17
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L39
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L61
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Referrals.sol#L57
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Staker.sol#L94

Informational.

Change events mentioned above to improve off-chain analysis.

Fixed: 081c1023f 19c6a476cb131d5b8ed9d17b58cb3c6

The function name Airdrop.mintUnclaimed() is misleading because the function

implementation doesn’t mint any token.

Even the function NatSpec states that the function is minting unclaimed tokens. In the

function implementation, it is clear that the function is not minting any token but just sending

unclaimed TLX tokens to the treasury.

Informational.

Rename the function to transferUnclaimed() , rename the event UnclaimedMinted to

UnclaimedTransferred and change the function NatSpec. Remove incorrect comment.

Fixed: bfc56e3424d78335afae041da1eb97409bdf78c1

RewardsStreaming is an abstract contract which is inherited by two contracts. Inheritance and

abstract contracts can eliminate duplicated code, result ing in smaller code and less room for

error.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

7. Informat ional - Misleading funct ion naming

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

8. Informat ional - Inheritance improvement

https://github.com/TLX-Protocol/protocol/commit/081c1023f19c6a476cb131d5b8ed9d17b58cb3c6
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L71
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/interfaces/IAirdrop.sol#L30
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L77
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L77
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L78
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Airdrop.sol#L52
https://github.com/TLX-Protocol/protocol/commit/bfc56e3424d78335afae041da1eb97409bdf78c1
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol

Some abstract functions are overwritten in only one contract, leading to difficult code reading.

_latestIntegral() has a default implementation, but it is also overridden in GenesisLocker .

Another contract Staker that implements RewardsStreaming , doesn’t override this function

which leads to a bit of confusion in the abstract contract. For example, the abstract contract

is using _latestIntegral() which has default implementation making it hard to track if it is

overridden later.

Because there are only two implementations of the abstract RewardsStreaming contract, the

function _latestIntegral() could be defined as virtual. This way, each contract extension

would have its own implementation of this function result ing in clear code in the abstract

contract.

Informational.

In the RewardsStreaming contract define the function _latestIntegral() as virtual. Each

contract that extends it should define its implementation. Try not to override functions from

the abstract contract, that are not virtual, especially if there are only two contracts that

extend it . Each contract can have its own implementation if needed. Follow the implementation

of activeBalanceOf() .

Fixed: 0bb8458c59fd9c3ad799d4be2e2017dc1da0666e

The OpenZeppelin contracts dependency is version 4 .9.1, which is outdated. Consider updating

to a newer version.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

9. Informat ional - Upgrade OpenZeppelin dependency

https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L91
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/GenesisLocker.sol#L148
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Staker.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L42
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L42
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L42
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/RewardsStreaming.sol#L53
https://github.com/TLX-Protocol/protocol/commit/0bb8458c59fd9c3ad799d4be2e2017dc1da0666e

OZ library v4 .9.1 is not the latest version available. Consider upgrading to v4 .9.6 which fixes

some minor issues in v4 .9.1.

Informational.

Upgrade OZ dependency to a newer version.

Fixed: aff09dd6956c6f572f425bf235c14a232c8d4031

ChainlinkAutomation defines the maximum size of the array it can check in checkUpkeep() . As

the number of LeveragedToken grows, ChainlinkAutomation could end up favouring tokens at

the start of the array.

The function checkUpkeep() has input parameter checkData which is defined during the upkeep

task registration process. This parameter can be utilized to define the start index of the array

containing all leveraged tokens. It enables deployment of new upkeep tasks when the size of

the leveraged tokens grows above _maxRebalances value. Each task will only check the

maximum number of leveraged tokens that can be rebalanced. This will cost more gas

because sometimes it will send an array to rebalance just one leveraged token, but it will not

favour leveraged tokens at the start of the array.

There is no information in Chainlink Automation docs on how often function checkUpkeep() is

checked or if there is any delay after performUpkeep() has been triggered. It is recommended to

verify there are no delays for tokens specified at the end of the leverage token list. Use a

minimal array size of 30, 5 tokens with 3 different leverage values for long and short, where all

tokens need a rebalance call.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

10. Informat ional - Split ChainlinkAutomation into mult iple upkeep tasks

T e c h n i c a l D e t a i l s

https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.9.6
https://github.com/TLX-Protocol/protocol/commit/aff09dd6956c6f572f425bf235c14a232c8d4031
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L15
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L83
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L83
https://github.com/smartcontractkit/chainlink/blob/8edf2758101fbf9083ddf1b6a25b36240d1de189/contracts/src/v0.8/automation/interfaces/AutomationCompatibleInterface.sol#L12
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L91
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/ChainlinkAutomation.sol#L91

Informational.

Define Chainlink Automation the start array index in static data checkData . Register multiple

upkeep tasks as the number leveraged tokens grow, each with new start index.

We are aware of the restriction and accept that risk. The amount of leveraged tokens currently

handled by the ChainlinkAutomation contract is within an acceptable range. If we have more

leveraged tokens later on that we think may require additional automation. Then we will build

new automation contracts to handle this. The current automation contract is not designed to

scale infinitely.

It ’s worth noting that the proposed fix would also not scale indefinitely. As the

leveragedTokenFactory().allTokens() call would eventually reach the gas limit of the

checkUpkeep function, even with the start index passed through.

Timelock allows its owner to propose, execute and cancel a set of external calls the contract

will make. The execution of a proposal may only occur after a certain t ime delay has passed

since the moment it was proposed.

Timelock ’s owner can create a proposal by calling Timelock.createProposal() , passing it an

array of (address target, bytes data) . This method sanit izes the calls_ array by feeding it

into Timelock._validateCallsAndGetMaxDelay() , which checks that target is never address(0)

and returns the longest delay, saved in storage, for the selectors specified.

In the case in which the calls_ array contains a set of selectors which have never been

assigned a delay, Timelock._validateCallsAndGetMaxDelay() will return 0 as the delay for the

proposal, which in turn will make it immediately executable within Timelock.executeProposal() .

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

11. Informat ional - Timelock allows instant arbitrary calls

T e c h n i c a l D e t a i l s

https://github.com/smartcontractkit/chainlink/blob/8edf2758101fbf9083ddf1b6a25b36240d1de189/contracts/src/v0.8/automation/interfaces/AutomationCompatibleInterface.sol#L12
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Timelock.sol
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Timelock.sol#L22-L36
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Timelock.sol#L128-L138
https://github.com/TLX-Protocol/protocol/blob/40b04b9459654ef834b695401832ad611dd41e8d/src/Timelock.sol#L54-L66

Informational.

There are several ways to fix this issue:

Timelock implies standard implementation of TimelockController from OpenZeppelin. Using a

different name would be more appropriate to avoid confusion with the current implementation.

Renamed Timelock to ProxyOwner : f0a196e392596c153a133d5ef02b876360338af6

TLX accepts all Leveraged Tokens for bonding. If the Leveraged Token has high volatility and a

high-leverage factor, TLX could accumulate risky tokens in protocol owned liquidity (POL). If

these tokens lose a lot of value or even get liquidated before being swapped for other tokens,

the protocol will lose money.

The attacker, or even regular users, could bond a lot of risky Leveraged Tokens, with high

volatility and a high leverage factor. Because the bonding mechanism can’t limit or decline risky

tokens or even pause bonding, this could lead to POL accumulating only high-leveraged

tokens. This is risky because there is no automated mechanism to swap those tokens. It is

planned to do it weekly which could lead to a lot of loss value for TLX. The docs specify: “This

liquidity, while init ially being acquired in the form of leveraged tokens, undergoes a weekly

rebalance”.

Informational.

In the bonding mechanism, implement granularity for accepted Leveraged Tokens. Accept only

Im p a c t

R e c o m m e n d a t i o n

Set a default delay for calls linked to function selectors that haven’t been assigned a delay.1

Set a minimum delay that all proposals must respect, which OpenZeppelin’s

TimelockController implements here.

2

During creation, force proposals to contain calls exclusively linked to function selectors

that have a non-zero delay.

3

D e v e l o p e r R e s p o n s e

12. Informat ional - Protocol owned liquidity could lose a lot of value

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

https://github.com/TLX-Protocol/protocol/commit/f0a196e392596c153a133d5ef02b876360338af6
https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a#token-liquidity
https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a#token-liquidity
https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a#token-liquidity
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/105fa4e1b0832a6a40cb7ba6e545bb844f02a711/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/105fa4e1b0832a6a40cb7ba6e545bb844f02a711/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/105fa4e1b0832a6a40cb7ba6e545bb844f02a711/contracts/governance/TimelockController.sol#L321-L323

Leveraged Tokens that can be handled safely in a weekly rebalance schedule. Another option is

to implement an automated f low for redeeming Leveraged Tokens for a base asset.

Additionally, swap it for ETH because POL will go to ETH pools.

We disagree that this is an issue and consider this out of scope of the audit. That tokens are

send to the POL is the intended protocol design. It is known and intentional that there are risks

in the POL holding volatile assets. Just as there is a chance that the POL could lose value from

this, there is an equal chance that it can gain value. Sure it ’s true, but it ’s not a vulnerability or

bug.

TLX enables the users to enter leveraged posit ions in Synthetix which are constantly kept at

the same leveraged level by rebalancing posit ions in Synthetix. The users pay the fees for

redeeming leveraged tokens. Even though the posit ion is kept at the same leveraged level, the

posit ion can get liquidated meaning the leveraged tokens are worth zero. Users should be

aware of the risks and fees when using the TLX protocol and high-leveraged posit ions.

Chainlink Automation handles rebalancing, which is off-chain and could not be fully reviewed.

Additional tokenomics is implemented in the protocol, like airdrop, bonding, and referrals. The

bonding mechanism accepts all leveraged tokens which are exchanged for TLX tokens and

sent to the treasury. By accepting and keeping high-leverage tokens, the treasury will be

exposed to a high risk of price movements.

The system is designed to be immutable with some parameters and contract addresses that

the owner can change. The owner is intended to be a Timelock contract which will delay the

execution of the owner’s actions. This will enable users to have time to react if the owner

decides to change the parameters. There are no upgradeable contracts, only delegate calls to

the SynthetixHandler contract which acts as a library to save gas costs.

D e v e l o p e r R e s p o n s e

Final Remarks

https://gist.github.com/danhper/fbaee6cb4aa52825b4264a230d5c517a#pol-mechanism

